
Software Engineering

and Architecture

Pattern Catalog: Proxy 



Case

• We need to show a graph of stock prices for a company.

• We use a paid web service

to fetch on-line stock prices

– 25cent pr request

– Interface:

CS@AU Henrik Bærbak Christensen 2



So, we can make a “graph”

• No, I did not want to write graph software, so I did a loop

CS@AU Henrik Bærbak Christensen 3

Impl., that connects to 
service and get the price…



So, we can make a “graph”

• No, I did not want to write graph software, so I did a loop:

CS@AU Henrik Bærbak Christensen 4

10 calls to the service
each costs 25 cents

Total: 250 cents



But…

• It is costly to fetch almost the same price over and over 

again. Why do we not cache it for some period of time?

– Caching: Store a local copy of an “expensive-to-get” value, and 

use that for a specified period of time, to avoid expensive 

requests…

• How does 3-1-2 look?
• 3: Encapsulate variation: We need to vary the request call – either 

make it or replace by local copy

• 1: Program to interface: Insist client only accesses the stock request 

through an interface

• 2: Favor composition: Compose behavior by putting an 

“intermediate”, the proxy, that will do a real fetch after some time 

limit.

CS@AU Henrik Bærbak Christensen 5



The Process

• 3 + 1: Already done:

• 2: Composition: The intermediate / ‘object-in-front’

CS@AU Henrik Bærbak Christensen 6



Again, Visually

• We use an intermediate object

CS@AU Henrik Bærbak Christensen 7

Real StockPrice
ObjectGraph Program

Logging ON
Proxy Object



The New Design

CS@AU Henrik Bærbak Christensen 8

10 calls, but only one 
expensive call!



Proxy Code

• Our Proxy Code

• Note: This is an

over-eager caching!

– Normally cache should

be ‘cold’ after N seconds

CS@AU Henrik Bærbak Christensen 9



(Caching Liability)

• A liability of caching (not of Proxy pattern in general) is 

that a local copy of course may be out-of-synch with the 

real value…

• For some time, a wrong value is shown…

– The real price has gone up, but we still use the cached value…

CS@AU Henrik Bærbak Christensen 10



Case used in FRS

• A web page contains a lot of images, 

many of which will never be 

displayed as they are ‘at the end of 

the scroll’ where the average user do 

not see at all. Can we avoid 

downloading them?

– Same for a long Word document etc.

• Loading from disk also takes time…

• But we still need image size in order 

to lay out the page properly,

– So some info needs to be fetched



Proxy

• Download on demand – i.e. only 

download the “heavy stuff” = the 

raster image, when the image 

become visible

• The point:

– Load the “small data” immediately

• Like image width and image height

– Load the “large data” on demand

• Like the graphics: PNG or JPEG data

• Two step loading

– i.load() (1); i.show() (2)



Another Case

• Proxy Pattern is central in Distributed Computing

• HotStone –

– Bente and Arne plays a game

• Bente on Bente’s computer

• Arne on Arne’s computer

– The game’s real state is on

hotstone.littleworld.dk

• Then, how does getCardInField() work

 on Bente’s Computer ?

– The card state is not on Bente’s

computer !!!

CS@AU Henrik Bærbak Christensen 13



Proxy to the Rescue

• Proxy is a surrogate/placeholder for another object

• Note – no (permanent) data on the client, all accessor 

and mutators become “call server, get answer”

CS@AU Henrik Bærbak Christensen 14

Send request to server for data on card (who, indexInField);
Await server responding with some data, for instance in JSON format;
Create a local ‘StandardCard’ with the values provided in that JSON format;
Return that card,



Proxy



Consequences

• Benefits

– Supports all types of access control: deferred access, 

pay-by-access, access logging (audit trail), access 

control, …

– Decouples domain behavior and access control 

behavior (Different roles! Cohesion!)

– Is the core technology in remote method 

invocation

• Java RMI

• .Net Remoting And in SWEA Broker…



Decorator Versus Proxy

• The look alike!

– Indeed, the UML looks very similar

• But they look at different things

– Decorator looks at the object itself (looking inside)

• Adding behaviour to the object itself

– Proxy looks at the user of the object (looking outside)

• Monitoring/controlling who is using the object


