/v

AARHUS UNIVERSITET

Software Engineering
and Architecture

Pattern Catalog: Proxy

Vav Case

AARHUS UNIVERSITET
« We need to show a graph of stock prices for a company.

Silicon Alley Insider ,\/\/ Chart of the Day

s Amazon’s Stock Price Tt
* Weusea paid web service ‘T:':::w s - 03
to fetch on-line stock prices - |
— 25cent pr request i
— Interface: -

interface StockPrice { T
double getQuotel();
int getServiceFee();

May May May May May May May May Ma
‘97 ‘98 ‘99 ‘00 '01 ‘02 '03 ‘04 ‘05 ‘06 ‘07 ‘08 ‘09

t

CS@AU Henrik Baerbak Christensen 2

Y o So, we can make a “graph”

AARHUS UNIVERSITET
* No, | did not want to write graph software, so | did a loop

public class Main {
public static void main(String[] args) throws InterruptedException {
// Create connection to Webserver with stockprices

StockPrice stockPrice = new RealStockPrice("SAS"); el Impl., that connects to
// Get stock price every 2 seconds service and get the price...
for (int 1 = 0; 1 < 10; i++) {
System.out.println(” --= Price is now: + stockPrice.getQuote());
Thread.sleep(>);
}
System.out.println(” == and it cost + stockPrice.getServiceFee() + ent");
}
} : $ java Main

Price is now: 0.03
Price 1is now: 0.03
Price is now: 0.03
Price is now: 0.03
Price is now: 0.04

Price is now: 0.04
Price is now: 0.04

Price is now: 0.04

> Price is now: 0.04
--> Price is now: 0.04
==_and it cost 250 cent

CS@AU

Y o So, we can make a “graph”

AARHUS UNIVERSITET
* No, | did not want to write graph software, so | did a loop:

public class Main {
public static void main(String[] args) throws InterruptedException {

// Create connection to Webserver with stockprices

StockPrice stockPrice = new RealStockPrice("=45");

// Get stock price every 2 seconds

for (int 1 = 0; i = 16; i++) {
System.out.println(” --= Price is now: + stockPrice.getQuote());
Thread.sleep(2000); <

}
System.out.println(® == and it cost 10 calls to the service

} : each costs 25 cents

1s now: 0.03 Total: 250 cents

is now: 0.03

is now: 0.03

is now: 0.03

is now: 0.04

is now: 0.04

is now: 0.04

is now: 0.04

is now: 0.04

is now: 0.04

cost 250 cent

ce
ce
ca
=
Ce
=E
ce
ce
ce

(=]

CS@AU

eV But...

AARHUS UNIVERSITET

 ltis costly to fetch almost the same price over and over
again. Why do we not cache it for some period of time?

— Caching: Store a local copy of an “expensive-to-get” value, and
use that for a specified period of time, to avoid expensive
requests...

e How does 3-1-2 look?

« 3: Encapsulate variation: We need to vary the request call — either
make it or replace by local copy

* 1. Program to interface: Insist client only accesses the stock request
through an interface

» 2: Favor composition: Compose behavior by putting an
‘intermediate”, the proxy, that will do a real fetch after some time
limit.

eV The Process

AARHUS UNIVERSITET

* 3+ 1:Already done: jjterface StockPrice {
double getQuote();
int getServiceFee();

t

« 2: Composition: The intermediate / ‘object-in-front’

«interface»
Client Subject

operation()

</

realSubject.operation()l% // R

- \
~ ~
rd T

Proxy RealSubject

ki operation() operation()

CS@AU Henrik Baerbak Christensen 6

/v Again, Visually

AARHUS UNIVERSITET
 We use an intermediate object

Real StockPrice
Object
Proxy Object

Graph Program

Logging ON

CS@AU Henrik Beerbak Christensen

/v

AARHUS UNIVERSITET

public class Main {
public static void main(String[] args) throws InterruptedException {

CS@AU

J// Create connection to
StockPrice stockPrice =

The New Design

ebserver with stockprices
new ProxyStockPrice(new RealStockPrice("SAS"));

// Get stock price every 2 seconds
for (int 1 = 0; 1 < 10; i++) {

System.out.println(
Thread.sleep(2000);
}

System.out.println(” == ¢

> Price
> Price
> Price
> Price
> Price

> Price
> Price
> Price
> Price

Mmoo m
(R R =

and

it

is

is
is
is
is
is
is
is
is

.

i =]

now: 0.

now: 0.C
now: 0.C
now: 0.E

now: 0O

now: 0.
now: 0.
now: 0.
now: 0.

s in
LIS W . W

NE

03
03
03
03

[, T |

TR S

cost 25 cent

Henrik Baerbak Christensen

+ stockPrice.getQuote());

+ stockPrice.getServiceFee() +" cent”);

$ java Main

L —

10 calls, but only one
expensive call!

/v Proxy COde // Proxy implementation

class ProxyStockPrice implements StockPrice {
AARHUS UN'VERS'TET private StockPrice subject; // The real provider of prices
* Qur Proxy Code

private double cachedPrice; // our local copy of the price
«interface»

Subject

public ProxyStockPrice(StockPrice subject) {
this.subject = subject;
cachedPrice = NO VALUE;

}

Client

operation()

~ public double getQuote() {
S double price;
RealSubject if (cacheValueMustBeRefreshed()) {
operation() price = subject.getQuote();
cachedPrice = price; // cache price for later use
} else {
price = cachedPrice;

}
* Note: This is an | return price;

Over-eager CaChIng' public int getServiceFee() {

return subject.getServiceFee();

realSubjeci.operation()%

Proxy

operation()

— Normally cache should)
be ‘Cold’ after N SeCOHdS public boolean cacheValueMustBeRefreshed() {

if (cachedPrice == NO VALUE) return true;
— return false;
}
private final static double NO VALUE = -1;

}
CS@AU Henrik Baerbak Christensen 9

/v (Caching Liability)

AARHUS UNIVERSITET

« Aliability of caching (not of Proxy pattern in general) is
that a local copy of course may be out-of-synch with the
real value...

Price 1
Price 1
Price i
Price i
Price 1
Price 1
Price 1
Price 1
Price 1
Price 1

--> Price is now: 0.03
> Price is now: 0.03
> Price 1is now: 0.03
--= Prire is now+: 0_0A3
--> Price is now: 0.04
> Price 1is now: 0.04
> Price is now: 0.04
--> Price is now: 0.04
> Price is now: 0.04

T Y Y Y I T T VA ¥

--> Price is now: 0.04 .
\\» == and it cost 250 cent == and it 4/

* FOr some time, a wrong value Is shown...
— The real price has gone up, but we still use the cached value...

CS@AU Henrik Baerbak Christensen 10

/v

AARHUS UNIVERSITET

« A web page contains a lot of images,
many of which will never be
displayed as they are ‘at the end of

the scroll’ where the average user do @

not see at all. Can we avoid
downloading them?

— Same for a long Word document etc.
» Loading from disk also takes time...

. . . L
« But we still need image size in order

to lay out the page properly,

— So some info needs to be fetched

Case used in FRS

Forsinkelse igen? Det rammer
80.000 togpassagerer hver dag
e ir kom tusindvis af togpassagerer for sent frem, nir de valgte den

Ider sig h nes EU lav
uske-sms'er fisk kvobe i@sterspen

MY Meningitis-sager

y afgjort: Tre
eenagedrenge kunne
have veereti live

/v

AARHUS UNIVERSITET

 Download on demand —i.e. only
download the “heavy stuff’ = the
raster image, when the image
become visible

* The point:
— Load the “small data” immediately
» Like image width and image height
— Load the “large data” on demand
 Like the graphics: PNG or JPEG data
« Two step loading

— i.load() (1); i.show() (2)

boltrer sig pa 133
hektar i Nordsjzelland?

ig h ves EUL

huske—sm:'er fiskekvoter i @sterseen

“ Y:“ ‘ Meningitis-sager J“"’f‘" -

@i afgjort: Tre el
teenagedrenge kunne

/v Another Case

AARHUS UNIVERSITET
« Proxy Pattern is central in Distributed Computing

« HotStone —

— Bente and Arne plays a game
« Bente on Bente’s computer
* Arne on Arne’s computer

— The game’s real state is on
hotstone.littleworld.dk

* Then, how does getCardInFleld() work

on Bente’'s Computer ?

— The card state is not on Bente’s
computer !!!

CS@AU Henrik Baerbak Christensen 13

/v

Proxy to the Rescue
AARHUS UNIVERSITET
* Proxy is a surrogate/placeholder for another object

public Card hetEardInField{Flayer who, int indexInField) {

Send request to server for data on card (who, indexInField);
Await server responding with some data, for instance in JSON format;

Create a local ‘StandardCard’ with the values provided in that JSON format;
Return that card,

* Note — no (permanent) data on the client, all accessor
and mutators become “call server, get answer”

CS@AU Henrik Baerbak Christensen 14

/v

AARHUS UNIVERSITET

Intent

Problem

Solution

Structure:

[25.1] Design Pattern: Proxy

Provide a surrogate or placeholder for another object to control access
toit

An object is highly resource demanding and will negatively affect the
client’s resource requirements even if the object is not used at all; or
we need different types of housekeeping when clients access the object,
like logging, access control, or pay-by-access.

Define a placeholder object, the Proxy, that acts on behalf of the real
object. The proxy can defer loading the real object, control access to it,
or in other ways lower resource demands or implement housekeeping
tasks.

sinterfaces

Client k——— Subject
operation()

Roles

Cost-
Benefit

realSuhject.operation{)I% ,J’ s

- Y
f, N\
\ Proxy RealSubject

operation() operation()

A Client only interacts via a Subject interface. The RealSubject is
the true object implementing resource-demanding operations (band-
width, computation, memory usage, etc.) or operations that need ac-
cess control (security, pay-by-access, logging, etc.). A Proxy imple-
ments the Subject interface and provides the relevant access control
by holding a reference to the real subject and delegating operations to
it.

It strengthens reuse as the housekeeping tasks are separated from the real
subject operations. Thus the subject does not need to implement the
housekeeping itself; and the proxy can act as proxy for several different
types of real subjects.

/v

AARHUS UNIVERSITET

 Benefits

— Supports all types of access control: deferred access,
pay-by-access, access logging (audit trail), access
control, ...

— Decouples domain behavior and access control
behavior (Different roles! Cohesion!)

— Is the core technology in remote method
invocation
« Java RMI
* .Net Remoting

Consequences

/v

AARHUS UNIVERSITET

 The look alike!

— Indeed, the UML looks very similar

Decorator Versus Proxy

component nparaucm(

dddddddddddddddd 3 .

» But they look at different things
— Decorator looks at the object itself (looking inside)
« Adding behaviour to the object itself

— Proxy looks at the user of the object (looking outside)
* Monitoring/controlling who is using the object

